
Developing Secure

IBM i Applications

2

• Introductions

• Design and Documentation

• Application Ownership and Authority

• A Simple Security Model

• Integrity Considerations

• Resources for Security Officers

• Questions & Answers

3

ROBIN TATAM, CISM

Director of Security Technologies

952-563-2768

robin.tatam@powertech.com

4

• Premier provider of security solutions & services

– 18 years in the security industry as an established thought leader

– Customers in over 70 countries, representing every industry

– Security subject matter expert for COMMON

• Wholly-owned subsidiary of HelpSystems since 2008

• IBM Advanced Business Partner

• Member of PCI Security Standards Council

• Authorized by NASBA to issue CPE credits for security education

• Publisher of the annual “State of IBM i Security Study”

http://www8.software.ibm.com/bpconnections/bpcms.nsf/BPE/0D129368771B9F9786256C4A0067C0A3?OpenDocument&OpenFrameset

5

• Introductions

• Design and Documentation

• Application Ownership and Authority

• A Simple Security Model

• Integrity Considerations

• Resources for Security Officers

• Questions & Answers

6

I’m a programmer!

They know I don’t

do documentation!

An application’s security

design should be an

integral part of the

normal analysis and

planning process.

The architecture should

be documented for later

reference.

7

Security design documentation is critical for auditors,

system administrators, and the “next” programmer.

Include information on:

– Overview of the security architecture

– What profiles need to exist (ownership and runtime)

– Which files contain sensitive data (audited or encrypted?)

– What authorization lists are used

– How data is accessed (application programs, Query, FTP, etc.)

– How users gain access (public authority, private authority,

adopted authority)

– Any special object runtime attributes (adoption, etc.)

8

Poor Planning Leads to Failed Execution

(and potentially unsecure applications)

17

• Introductions

• Design and Documentation

• Application Ownership and Authority

• A Simple Security Model

• Integrity Considerations

• Resources for Security Officers

• Questions & Answers

18

Under IBM i, every object is “owned” by a profile that

is initially granted *ALL access to the object.

Object ownership is assigned when the object is first

created, and can be changed using the

CHGOBJOWN and CHGOWN commands.

Initial ownership is claimed by the user

who creates it, or the group that they

belong to (depends on their profile settings).

19

The owner is

automatically

granted *ALL access

20

Consider creating a profile specifically to “own”

the related application objects:

– Provides consistency

– Helps simplify save/restore operations

I recommend NOT using IBM-supplied

profiles, or allowing programmers to

remain the owners.

21

The “owning” profile does not need any special

authority (unless the application performs system tasks

using authority adoption).

CRTUSRPRF USRPRF(PAYOWN) PASSWORD(*NONE)

SPCAUT(*NONE) INLPGM(*NONE) INLMNU(*SIGNOFF)

LMTCPB(*YES)

An application build process or lifecycle manager (aka

change control) can ensure correct object ownership

and authority settings.

22

It is possible to change the owner’s

authority so that they cannot access

an object that they own!

However, ownership provides certain

privileges, such as the ability to set

authorities for other users—including

themselves!

23

24

The application design should accommodate objects

that are created by the users during runtime.

Typically, the application should:

– Create the new object (CRTxxx)

– Set object ownership (CHGOBJOWN)

– Establish the desired authorities (GRTOBJAUT)

25

IBM i contains a unique concept called Public

Authority which is the default permission granted

to a user who has not been granted any explicit

authority (including *EXCLUDE).

Public authority is determined by:

– For native objects: public authority is assigned starting

from the CRTxxx command

– For IFS objects: public authority is inherited from the

parent directory

26

For native objects, IBM resolves the public authority

setting from the command to the library description

to the QCRTAUT system value.

Once the *PUBLIC authority is resolved, it’s

permanent—there is no dynamic link.

DSPSYSVAL
QCRTAUT

CRTxxx
AUT(*LIBCRTAUT)

DSPLIBD
CRTAUT(*SYSVAL)

27

There is nothing technically wrong with the

concept of default public authority.

Problems begin when the QCRTAUT system

value remains at its shipped value: *CHANGE

(That’s sufficient to read, change, and delete data!)

DSPSYSVAL
QCRTAUT

28

I recommend controlling the public authority

default for each individual library.

This permits granular control; especially when

the server contains multiple applications with

varying authority requirements.

DSPLIBD
CRTAUT(*EXCLUDE)

CRTxxx
AUT(*LIBCRTAUT)

DSPSYSVAL
QCRTAUT

29

Every object has a

default authority

(*PUBLIC)

30

A user must have the required level of authority to access

an object based on the requested action.

Authority is determined in the following (basic) sequence:

1. Individual User

2. Group Profile (consolidated if multiple groups)

3. *PUBLIC

31

IBM i provides 4 authority templates …

32

… to quickly assign more complex authorities

33

These are the OBJECT authorities.

34

Although endless combinations are possible, it

does not have to be as complex as it might seem.

– *EXCLUDE Object cannot be accessed.

– *USE Minimum authority necessary to “use”

 the object (read it / run it / look at it).

– *CHANGE Adds the ability to modify the object’s

 contents.

– *ALL Can do everything, including deleting

 the object itself. Do NOT grant lightly.

Deploy using IBM i templates whenever possible.

35

36

And these are the DATA authorities.

37

38

IBM i performs TWO evaluations before permitting

access to an object.

Sufficient

Access to the

LIBRARY

Sufficient

Access to the

OBJECT

YES

YES

NO

NO

39

Establishing an application environment that’s compliant

with object-level security is remarkably quick and easy:

• Place programs in a library and grant *USE access to

authorized users

• Place files and data areas in a data library and grant

*USE or *CHANGE access to authorized users

If you use adopted or swap authority, you can even set

public authority to *EXCLUDE (more on this later).

40

If you over-secure an object, or fail to elevate authority at

runtime, the user will receive an authority failure.

An “AF” entry will be logged to QAUDJRN audit journal.

(You’ve activated IBM i auditing right?)

41

*ALLOBJ

Do NOT respond by granting the user *ALLOBJ special

authority as this is a system-wide override!!

Determine why the failure occurred and correct it.

42

*ALLOBJ

Private authority is “named” access, and granted to an

individual user or group profile

(Public authority represents “anonymous” access)

Private authority can be more restrictive

but is typically less restrictive than

public authority

Common terms: Deny-by-default &

 Least privilege

43

Private authorities

are for specific

users or groups and

are optional

44

45

Group profiles are a mechanism for role-based access

control (RBAC).

Associate users with similar security requirements using a

group and grant application authority to the group.

A user can belong to 1 primary group and up to 15

supplemental groups (don’t go “group crazy”).

Users inherit private and special authorities from ALL of

their groups (private authorities are additive).

46

Group profiles are for organization and authority

inheritance and should never be used to sign on

(even for development purposes).

Group profiles are created like any other user, except we

recommend:

– PASSWORD(*NONE)

– INLPGM(*NONE)

– INLMNU(*SIGNOFF)

– LMTCPB(*YES)

47

A group profile is like any other user profile until it’s

designated as a group profile for another user.

48

49

Authorization lists are an organizational mechanism for

securing objects with similar security requirements:

– All objects secured by an authorization list obtain private

authorities (and, optionally, public authorities) from the list

– You can still grant specific authorities to objects to augment

(override) the authorities on the authorization list

 CRTAUTL AUTL(myautl) AUT(*EXCLUDE)

 ADDAUTLE or EDTAUTL to maintain the list entries

24x7 shop? Changing authorities on an authorization

list does NOT require a lock on the object.

50

Authorization lists are not required; especially for simple

authorization schemes. For example, if using adoption or

a profile swap, then everything can simply be set to

*EXCLUDE.

Authorization lists may help future-proof

your application security and also

permit access from outside the

application (e.g. for file downloading).

51

This object is

secured by the

PAYROLL

authorization list

52

These authorities

take precedence

over those on the

authorization list

53

You must manually

set *PUBLIC to

*AUTL to defer to

the authorization list

54

This is a very popular question. It’s typically not a decision of

which one you should use; consider using them both.

Remember:

– Groups associates users with similar access requirements.

– Authorization List secures objects with similar security

requirements.

55

100

users

100

objects

Group Profile Auth List

1 x ADDAUTLE

User
User

User
User

User
User

User

Object
Object

Object
Object

Object
Object

Object
Object

Before

After

1000’s of GRTOBJAUT

56

Adoption permits a user to access objects that are

normally restricted.

It works by inheriting

the authority of the

application program’s

owner profile to

supplement the

user’s own authority.

It’s only used if the user’s own

authority fails the authorization tests.

57

Normally, a program executes with the authority of the

user running it.

Adoption comes into play if the IBM i authority check

determines that the user does not have sufficient

permission.

Adoption adds the authority of the programs’ object owner

which can (potentially) increase the effective authority

while the program runs.

58

In addition, authority can be inherited from programs

higher in the call stack; however, that is a separate

setting.

Some nuances:

– Authority is additive (adoption cannot reduce a user’s authority)

– Adoption is not observed in the Integrated File System (use a

profile swap instead)

– Authority can be adopted from multiple owning profiles

If a program uses adopted authority, it should never

present a command line to the user!

59

Activate Adoption by

setting this

parameter to

*OWNER

60

And the program will

also run with the

authority of this

profile

61

*YES directs IBM i

to utilize authorities

adopted from the

prior programs in

the call stack

62

A built-in function called MODINVAU controls whether the

adoption is passed to a called program by turning it on

and off inside the calling program.

This ensures that the correct setting is

always active, even if the programmer

forgets to set the program attribute

correctly.

On: CallPrc PRC(‘_MODINVAU’) Parm(x’00’)

Off: CallPrc PRC(‘_MODINVAU’) Parm(x’01’)

63

PGM_A

Owner: APPOWNER

User Profile: *OWNER

PGM_B

Owner: QSECOFR

Use Adopted Authority: *YES

User Profile: *OWNER

PGM_C

Owner: APPOWNER

Use Adopted Authority: *NO

User Profile: *USER

user then APPOWNER

user then APPOWNER

(from PGM_A) then QSECOFR

Only user because

USEADPAUT(*NO) and

USRPRF(*USER)

Program Call Stack Users Checked

64

A more modern approach to altering authority is to swap

to a more powerful profile.

Swapping relinquishes your current

profile attributes and inherits multiple

attributes of the target profile, such as:

– Special Authorities

– Private Authorities

– Group membership

– Command Line Permission

65

During an active

swap, IBM i reacts

as if you are signed

on as this profile

66

Auditing is tied to

the original job (so

concurrent

swapping is okay)

67

Swapping is performed via security APIs:
– QSYGETPH Get profile handle

– QWTSETP Swap profile using profile handle

– QSYRLSPH Release profile handle

Programs may need to use adoption to satisfy API rules:
– Users must have at least *USE access to the target profile

– If the target profile has an expired password, user must also have *ALLOBJ

and *SECADM

– If the target profile is disabled, profile handle may be denied or user must also

have *ALLOBJ and *SECADM (depends on API parameters)

68

*YES directs IBM i

to use adopted

authorities from the

prior program in the

call stack

When retrieving the

active user, always

use CURUSER

69

Swapping resolves three key challenges

with adoption:

– It’s honored within the IFS

– Permits up- AND down-grading authority

– Supported by non-5250 interfaces

Swapping is flexible as it can be turned on

and off programmatically; however, only

one swap can be active at a time.

If a program uses profile swapping, remember to swap

back before presenting the user with a command line!

70

Understanding how IBM i

determines whether access

will be granted or denied

aids planning and

troubleshooting

For a full-sized copy of this

chart, email a request to

robin.tatam@powertech.com

mailto:robin.tatam@powertech.com

71

• Introductions

• Design and Documentation

• Application Ownership and Authority

• A Simple Security Model

• Integrity Considerations

• Resources for Security Officers

• Questions & Answers

72

There are many different ways to build a secure

application.

Let’s explore how to deploy a native application with

authority adoption within a secure library.

73

Create application owner profile

CRTUSRPRF USRPRF(appowner) PASSWORD(*NONE) INLPGM(*NONE)

INLMNU(*SIGNOFF) USRCLS(*USER) SPCAUT(*NONE) LMTCPB(*YES)

Create authorization lists

CRTAUTL AUTL(dataautl) AUT(*EXCLUDE)

CHGOBJOWN OBJ(dataautl) OBJTYPE(*AUTL) NEWOWN(appowner)

CRTAUTL AUTL(pgmautl) AUT(*EXCLUDE)

CHGOBJOWN OBJ(pgmautl) OBJTYPE(*AUTL) NEWOWN(appowner)

74

Establish secure libraries for programs and data

CRTLIB LIB(pgmlib) AUT(*USE) CRTAUT(*EXCLUDE)

CHGOBJOWN OBJ(pgmlib) OBJTYPE(*LIB) NEWOWN(appowner)

CRTLIB LIB(datalib) AUT(*EXCLUDE) CRTAUT(*EXCLUDE)

CHGOBJOWN OBJ(datalib) OBJTYPE(*LIB) NEWOWN(appowner)

Link libraries to authorization lists

GRTOBJAUT OBJ(datalib) OBJTYPE(*LIB) AUTL(dataautl)

GRTOBJAUT OBJ(pgmlib) OBJTYPE(*LIB) AUTL(pgmautl)

75

Create files (and data areas etc.)

CRTPF FILE(datalib/myfile) AUT(*LIBCRTAUT)

CHGOBJOWN OBJ(datalib/myfile) OBJTYPE(*FILE) NEWOWN(appowner)

Link files to authorization lists

GRTOBJAUT OBJ(datalib/myfile) OBJTYPE(*FILE) AUTL(dataautl)

76

Create programs

CRTPGM PGM(pgmlib/mypgm) AUT(*LIBCRTAUT)

CHGOBJOWN OBJ(pgmlib/mypgm) OBJTYPE(*PGM) NEWOWN(appowner)

Link programs to authorization list

GRTOBJAUT OBJ(pgmlib/mypgm) OBJTYPE(*PGM) AUTL(pgmautl)

77

Defer public authorities to come from AUTLs

GRTOBJAUT OBJ(datalib/myfile) OBJTYPE(*FILE) USER(*PUBLIC)

AUTL(dataautl)

GRTOBJAUT OBJ(pgmlib/mypgm) OBJTYPE(*FILE) USER(*PUBLIC)

AUTL(pgmautl)

78

Set entry point program to use owner authority

CHGPGM PGM(pgmlib/myentrypgm) USRPRF(*OWNER)

Authorize application users to the entry point

GRTOBJAUT OBJ(pgmlib/myentrypgm) OBJTYPE(*PGM) USER(user-or-group)

AUT(*USE)

79

Pgm

Pgm

File

File

File

File

Secure Library

Programs inherit

authority from

entry program

Extra Secure Library

Files can only be accessed by application

programs

Entry

Pgm

80

Some additional considerations

– Objects created during runtime

– Non-5250 access

– Query access

– IFS objects

(Reminder: no adoption in IFS)

81

• Introductions

• Design and Documentation

• Application Ownership and Authority

• A Simple Security Model

• Integrity Considerations

• Resources for Security Officers

• Questions & Answers

82

Lifecycle applications (aka change control) enable

programs to be deployed into a production library—

securely and consistently—and establish the correct

runtime attributes.

Test

Owner(appowner)

USRPRF(*OWNER)

USEADPAUT(*YES)

AUT(*EXCLUDE)

Prod

83

*ALLOBJ

When restoring the application:

• Ensure that the owner profile exists prior to restoring

the application objects.

• If private authority is used, restore the user

profiles (including authorization lists) and

then restore the application objects.

• Finally, restore the user’s private authorities

using the RSTAUT command.

An application “builder” (CL program)

greatly simplifies the security configuration process

84

*ALLOBJ

At security level 40 or 50, integrity is enforced and user

programs must use APIs and approved interfaces to

access to system objects.

IBM i performs Hardware Storage Protection and

Domain Validation to prevent system objects being

accessed directly via memory pointers.

QSECURITY levels below 40 have well-known security

vulnerabilities. Do NOT run below level 40!

85

Every object has a

domain, *SYSTEM

or *USER

86

Every object has a

domain, *SYSTEM

or *USER

Every program has

a state, *SYSTEM

or *USER

87

• Programs running *SYSTEM state can access both

*USER and *SYSTEM domain objects.

• Programs running *USER state can only access

*USER domain objects.

*USER domain user objects (QUSRxxx) can be created in

QTEMP plus anywhere listed in the QALWOBJDMN

system value.

 Domain and State compatibility is only enforced at

security levels 40 and 50.

88

Contrary to what many of us were taught, *LIBL increases

the risk that an application can be compromised.

Although hard-coding a

library is often not desired,

consider using soft-coding

library names in a data area or file.

“Tell the

programmers

to stop using

*LIBL”

89

Menus are a beneficial application interface but they are

NOT considered adequately secure.

The problem is that:

– Menus are often used as the only form of access control

– Not all access comes via legacy native 5250 (telnet)

– Object security is often deemed unnecessary

Exit programs can provide a compensating control;

however, best security practices should still be used.

90

• Introductions

• Design and Documentation

• Application Ownership and Authority

• Integrity Considerations

• Resources for Security Officers

• Questions & Answers

91

92

93

Online Compliance Guide

Security Policy

94

Please visit www.helpsystems.com/powertech to access:

• Demonstration Videos & Trial Downloads

• Product Information Datasheets

• White Papers and Technical Articles

• Case Studies

• PowerNews Newsletter Registration

• FREE Compliance Assessment

www.helpsystems.com/powertech (800) 328-1000

info.powertech@helpsystems.com

95

• Introductions

• Design and Documentation

• Application Ownership and Authority

• Integrity Considerations

• Resources for Security Officers

• Questions & Answers

96

97

+1 253-872-7788 info.powertech@helpsystems.com

www.helpsystems.com/powertech

